An integral Riemann–Roch theorem for surface bundles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Integral Geometric Theorem for Simple Valuations

We prove a translative mean value formula for simple valuations, taken at the intersection of a fixed and a translated convex body. MSC 2000: 52A22 (primary); 52B45 (secondary)

متن کامل

An Integral Riemann-roch Formula for Flat Line Bundles

Let p be a unitary representation of the subgroup K of the finite group 0, with inclusion map / . Then, if /, and /# denote the transfer maps for representation theory and cohomology respectively, Knopfmacher [8] has proved that, for all k ^ 1, there exist positive integers Mk such that Mk(k\chk(fiP))=U(Mkk\ohk(P)). Here ch& denotes the fcth component of the Chern character, so that k! chfc is ...

متن کامل

On Clifford’s Theorem for Rank-3 Bundles

In this paper we obtain bounds on h(E) where E is a semistable bundle of rank 3 over a smooth irreducible projective curve X of genus g ≥ 2 defined over an algebraically closed field of characteristic 0. These bounds are expressed in terms of the degrees of stability s1(E), s2(E). We show also that in some cases the bounds are best possible. These results extend recent work of J. Cilleruelo and...

متن کامل

An integral representation theorem of g-expectations

There are two classes of nonlinear expectations, one is the Choquet expectation given by Choquet (1955), the other is the Peng’s g-expectation given by Peng (1997) via backward differential equations (BSDE). Recently, Peng raised the following question: can a g-expectation be represented by a Choquet expectation? In this paper, we provide a necessary and sufficient condition on g-expectations u...

متن کامل

A Noether-Lefschetz theorem for vector bundles

In this note we use the monodromy argument to prove a NoetherLefschetz theorem for vector bundles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2010

ISSN: 0001-8708

DOI: 10.1016/j.aim.2010.06.001